Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 5037, 2024 02 29.
Artigo em Inglês | MEDLINE | ID: mdl-38424450

RESUMO

The filamentous Thermoascus aurantiacus fungus characterized by its thermophilic nature, is recognized as an exceptional producer of various enzymes with biotechnological applications. This study aimed to explore biotechnological applications using polygalacturonase (PG) derived from the Thermoascus aurantiacus PI3S3 strain. PG production was achieved through submerged fermentation and subsequent purification via ion-exchange chromatography and gel filtration methods. The crude extract exhibited a diverse spectrum of enzymatic activities including amylase, cellulase, invertase, pectinase, and xylanase. Notably, it demonstrated the ability to hydrolyze sugarcane bagasse biomass, corn residue, and animal feed. The purified PG had a molecular mass of 36 kDa, with optimal activity observed at pH 4.5 and 70 °C. The activation energy (Ea) was calculated as 0.513 kJ mol-1, highlighting activation in the presence of Ca2+. Additionally, it displayed apparent Km, Vmax, and Kcat values of at 0.19 mg mL-1, 273.10 U mL-1, and 168.52 s-1, respectively, for hydrolyzing polygalacturonic acid. This multifunctional PG exhibited activities such as denim biopolishing, apple juice clarification, and demonstrated both endo- and exo-polygalacturonase activities. Furthermore, it displayed versatility by hydrolyzing polygalacturonic acid, carboxymethylcellulose, and xylan. The T. aurantiacus PI3S3 multifunctional polygalacturonase showed heightened activity under acidic pH, elevated temperatures, and in the presence of calcium. Its multifunctional nature distinguished it from other PGs, significantly expanding its potential for diverse biotechnological applications.


Assuntos
Saccharum , Thermoascus , Poligalacturonase/metabolismo , Thermoascus/metabolismo , Celulose , Enzimas Multifuncionais , Saccharum/metabolismo , Concentração de Íons de Hidrogênio , Estabilidade Enzimática , Temperatura
2.
An Acad Bras Cienc ; 93(1): e20191349, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33787686

RESUMO

Microbial ß-glucosidases can be used in several industrial processes, including production of biofuels, functional foods, juices, and beverages. In the present work, production of ß-glucosidase by solid state cultivation of the fungus Thermoascus crustaceus in a low-cost cultivation medium (comprising agroindustrial residues) was evaluated. The highest production of ß-glucosidase, about 415.1 U/g substrate (or 41.51 U/mL), was obtained by cultivating the fungus in wheat bran with 70% humidity, during 96 h at 40°C. The enzymatic activity was optimum at pH 4.5 and 65°C. ß-Glucosidase maintained its catalytic activity when incubated at a pH range of 4.0-8.0 and temperature of 30-55°C. The enzyme was strongly inhibited by glucose; even when the substrate and glucose concentrations were equal, the inhibition was not reversed, suggesting a non-competitive inhibition. In the presence of up to 10% ethanol, ß-glucosidase maintained its catalytic activity. In addition to ß-glucosidase, the enzymatic extract showed activity of 36 U/g for endoglucanase, 256.2 U/g for xylanase, and 18.2 U/g for ß-xylosidase. The results allow to conclude that the fungus T. crustaceus has considerable potential for production of ß-glucosidase and xylanase when cultivated in agroindustrial residues, thereby reducing the cost of these biocatalysts.


Assuntos
Celulase , Thermoascus , Eurotiales , Fermentação , Concentração de Íons de Hidrogênio , Thermoascus/metabolismo , beta-Glucosidase
3.
Bioresour Technol ; 143: 196-203, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23796604

RESUMO

The role of CBM in two fungal model cellulase systems, consisting of Cel7A and Cel5A, from Trichoderma reesei and Thermoascus aurantiacus, were compared in the hydrolysis of various substrates. For comparison, family-1 CBM's were introduced to the T. aurantiacus and removed from the T. reesei enzymes. Especially at high dry matter consistencies of lignocellulosic substrates, pretreated wheat straw and spruce, the T. aurantiacus enzymes lacking CBM outperformed the enzymes carrying the CBM. In these conditions, the CBM-less enzymes from both organisms obviously recognized and bound to the substrate at higher probability than in dilute systems. Avoiding the unproductive binding to lignin caused by the CBMs obviously enhanced the hydrolytic performance. The lignin binding effect was, however, not entirely caused by the CBM, but also by the different structures and affinities of the core enzymes to lignin. Due to decreased binding, the CBM-less enzymes would allow reuse, potentially decreasing hydrolysis costs.


Assuntos
Proteínas de Bactérias/metabolismo , Metabolismo dos Carboidratos , Thermoascus/metabolismo , Trichoderma/metabolismo , Adsorção , Hidrólise , Especificidade por Substrato
4.
World J Microbiol Biotechnol ; 28(1): 113-9, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22806786

RESUMO

Thermoascus aurantiacus is able to secrete most of the hemicellulolytic and cellulolytic enzymes. To establish the xylanase inducers of T. aurantiacus, the mycelia were first grown on glucose up until the end of the exponential growth phase, followed by washing and re-suspension in a basal medium without a carbon source. Pre-weighed amounts of xylose (final concentration of 3.5 mg/ml), xylobiose (7 mg/ml) and hydrolyzed xylan from sugarcane bagasse (HXSB) which contained xylose, xylobiose and xylotriose (6.8 mg/ml) were evaluated as inducers of xylanase. It was observed that xylose did not suppress enzyme induction of T. aurantiacus when used in low concentrations, regardless of whether it was inoculated with xylobiose. Xylobiose promoted fast enzyme production stopping after 10 h, even at a low consumption rate of the carbon source; therefore xylobiose appears to be the natural inducer of xylanase. In HXSB only a negligible xylanase activity was determined. Xylose present in HXSB was consumed within the first 10 h while xylobiose was partially hydrolyzed at a slow rate. The profile of α-arabinofuranosidase induction was very similar in media induced with xylobiose or HXSB, but induction with xylose showed some positive effects as well. The production profile for the xylanase was accompanied by low levels of cellulolytic activity. In comparison, growth in HXSB resulted in different profiles of both xylanase and cellulase production, excluding the possibility of xylanase acting as endoglucanases.


Assuntos
Celulase/biossíntese , Proteínas Fúngicas/biossíntese , Glicosídeo Hidrolases/biossíntese , Thermoascus/enzimologia , Biomassa , Biotecnologia , Dissacarídeos/metabolismo , Indução Enzimática , Hidrólise , Cinética , Thermoascus/crescimento & desenvolvimento , Thermoascus/metabolismo , Xilanos/metabolismo
5.
J Food Sci ; 75(7): C588-94, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21535524

RESUMO

In recent years, the baking industry has focused its attention on substituting several chemical compounds with enzymes. Enzymes that hydrolyze nonstarch polysaccharides, such as xylanase, lead to the improvement of rheological properties of dough, loaf specific volume, and crumb firmness. The purpose of this study was to find a better solid-state fermentation substrate to produce high levels of xylanase and low levels of protease and amylase, which are enzymes involved in bread quality, from Thermoascus aurantiacus CBMAI 756. Wheat bran, corncob, and corn straw were used as energy sources. The enzyme extract of corncob showed high xylanase activity (130 U/mL) and low amylase and protease activity (<1 and 15 U/mL, respectively). This enzyme profile may be more profitable for the baking industry, because it results in a slower degradation of gluten. Our results confirm this finding, because the enzyme obtained by fermentation in corncob resulted in a gluten with a higher specific volume than all the other substrates that were tested. The crude xylanase presented maximum activity at a pH of 5, and the optimum temperature was 75 °C. It was stable up to 70 °C for an hour and at a pH range from 4 to 10.


Assuntos
Endo-1,4-beta-Xilanases/metabolismo , Aditivos Alimentares/metabolismo , Proteínas Fúngicas/metabolismo , Thermoascus/enzimologia , Pão/análise , Fenômenos Químicos , Estabilidade Enzimática , Fermentação , Tecnologia de Alimentos , Glutens/análise , Temperatura Alta , Concentração de Íons de Hidrogênio , Peptídeo Hidrolases/metabolismo , Controle de Qualidade , Thermoascus/metabolismo , Fatores de Tempo , alfa-Amilases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...